Tuesday, June 30, 2009

A Computer Program and Its Output for Solving a System of Simultaneous Nonlinear Diophantine Equations with Twenty-Five Variables

Jsun Yui Wong

The computer program listed here seeks to solve the following system of simultaneous nonlinear Diophantine equations with
X(i)= 0, 1, 2, 3, 4, 5,..., 998, 999, 1000 for i= 1, 2, 3,..., 25.

X(3)^4+X(5)*X(12)*X(14)+X(9)^2+X(10)-38969017#=0
X(10)^4+X(7)*X(9)*X(20)+X(2)^2+X(19)-870735!=0
X(18)^4+X(1)*X(2)*X(8)+X(10)^2+X(11)-52252086#=0
X(9)^4+X(1)*X(7)*X(25)+X(17)^2+X(20)-2917509!=0
X(21)^4+X(2)*X(6)*X(11)+X(19)^2+X(1)-20527529#=0
X(19)^4+X(3)*X(4)*X(7)+X(8)^2+X(12)-637223!=0
X(25)^4+X(5)*X(8)*X(12)+X(1)^2+X(21)-6773278!=0
X(11)^4+X(6)*X(9)*X(10)+X(11)^2+X(13)-28477325#=0
X(8)^4+X(7)*X(13)*X(14)+X(18)^2+X(2)-917275!=0
X(1)^4+X(5)*X(10)*X(20)+X(21)^2+X(14)-211042!=0
X(17)^4+X(7)*X(8)*X(16)+X(12)^2+X(15)-8110408!=0
X(15)^4+X(17)*X(18)*X(19)+X(20)^2+X(3)-5888631!=0
X(7)^4+X(1)*X(20)*X(23)+X(25)^2+X(4)-47478326#=0
X(16)^4+X(5)*X(22)*X(24)+X(3)^2+X(16)-68597277#=0
X(14)^4+X(10)*X(21)*X(25)+X(13)^2+X(25)-19075249#=0
X(4)^4+X(7)*X(12)*X(20)+X(4)^2+X(9)-176555!=0
X(13)^4+X(3)*X(9)*X(25)+X(14)^2+X(17)-2043759!=0
X(5)^4+X(10)*X(20)*X(21)+X(24)^2+X(23)-98261!=0
X(24)^4+X(5)*X(8)*X(11)+X(15)^2+X(7)-5329953!=0
X(12)^4+X(10)*X(15)*X(19)+X(5)^2+X(24)-745777!=0
X(23)^4+X(16)*X(18)*X(20)+X(23)^2+X(22)-461147!=0
X(2)^4+X(12)*X(15)*X(24)+X(16)^2+X(6)-47534872#=0
X(20)^4+X(22)*X(23)*X(25)+X(22)^2+X(18)-4512876!=0
X(22)^4+X(11)*X(17)*X(22)+X(6)^2+X(5)-2021167!=0
X(6)^4+X(9)*X(19)*X(24)+X(7)^2+X(8)-14836390#=0
X(18)^4+X(7)*X(12)*X(25)+X(6)^2+X(15)-52327275#=0

This nonlinear system is based on line 388 through line 430 of the computer program on pages 872-874 of Wong [3], which is based on Conley [1].

0 DEFDBL A-Z
3 DEFINT I,J,K
4 DIM X(42),A(42),L(33),K(33)
5 FOR JJJJ=-32000 TO 32000
14 RANDOMIZE JJJJ
16 M=-1D+17
91 FOR KK=1 TO 25
94 A(KK)=FIX(RND*1001)
95 NEXT KK
126 IMAR=10+FIX(RND*10000)
128 FOR I=1 TO IMAR
129 FOR K=1 TO 25
131 X(K)=A(K)
132 NEXT K
251 IAP1=1+FIX(RND*25)
252 X(IAP1)=FIX(RND*1001)
321 L1=X(3)^4+X(5)*X(12)*X(14)+X(9)^2+X(10)-38969017#
322 L2=X(10)^4+X(7)*X(9)*X(20)+X(2)^2+X(19)-870735!
323 L3=X(18)^4+X(1)*X(2)*X(8)+X(10)^2+X(11)-52252086#
324 L4=X(9)^4+X(1)*X(7)*X(25)+X(17)^2+X(20)-2917509!
325 L5=X(21)^4+X(2)*X(6)*X(11)+X(19)^2+X(1)-20527529#
326 L6=X(19)^4+X(3)*X(4)*X(7)+X(8)^2+X(12)-637223!
327 L7=X(25)^4+X(5)*X(8)*X(12)+X(1)^2+X(21)-6773278!
328 L8=X(11)^4+X(6)*X(9)*X(10)+X(11)^2+X(13)-28477325#
329 L9=X(8)^4+X(7)*X(13)*X(14)+X(18)^2+X(2)-917275!
330 L10=X(1)^4+X(5)*X(10)*X(20)+X(21)^2+X(14)-211042!
331 L11=X(17)^4+X(7)*X(8)*X(16)+X(12)^2+X(15)-8110408!
332 L12=X(15)^4+X(17)*X(18)*X(19)+X(20)^2+X(3)-5888631!
333 L13=X(7)^4+X(1)*X(20)*X(23)+X(25)^2+X(4)-47478326#
334 L14=X(16)^4+X(5)*X(22)*X(24)+X(3)^2+X(16)-68597277#
335 L15=X(14)^4+X(10)*X(21)*X(25)+X(13)^2+X(25)-19075249#
336 L16=X(4)^4+X(7)*X(12)*X(20)+X(4)^2+X(9)-176555!
337 L17=X(13)^4+X(3)*X(9)*X(25)+X(14)^2+X(17)-2043759!
338 L18=X(5)^4+X(10)*X(20)*X(21)+X(24)^2+X(23)-98261!
339 L19=X(24)^4+X(5)*X(8)*X(11)+X(15)^2+X(7)-5329953!
340 L20=X(12)^4+X(10)*X(15)*X(19)+X(5)^2+X(24)-745777!
341 L21=X(23)^4+X(16)*X(18)*X(20)+X(23)^2+X(22)-461147!
342 L22=X(2)^4+X(12)*X(15)*X(24)+X(16)^2+X(6)-47534872#
343 L23=X(20)^4+X(22)*X(23)*X(25)+X(22)^2+X(18)-4512876!
344 L24=X(22)^4+X(11)*X(17)*X(22)+X(6)^2+X(5)-2021167!
345 L25=X(6)^4+X(9)*X(19)*X(24)+X(7)^2+X(8)-14836390#
346 L26=X(18)^4+X(7)*X(12)*X(25)+X(6)^2+X(15)-52327275#
1220 P1NEWMAY=-ABS(L1)-ABS(L2)-ABS(L3)-ABS(L4)-ABS(L5)-ABS(L6)-ABS(L7)-ABS(L8)-ABS(L9)-ABS(L10)-ABS(L11)-ABS(L12)-ABS(L13)
1222 P1NEWMAZ=-ABS(L14)-ABS(L15)-ABS(L16)-ABS(L17)-ABS(L18)-ABS(L19)-ABS(L20)-ABS(L21)-ABS(L22)-ABS(L23)-ABS(L24)-ABS(L25)-ABS(L26)
1448 P=P1NEWMAY+P1NEWMAZ
1451 IF P<=M THEN 1670
1501 LL1=L1:LL2=L2:LL3=L3:LL4=L4:LL5=L5
1502 LL6=L6:LL7=L7:LL8=L8:LL9=L9:LL10=L10
1503 LL11=L11:LL12=L12:LL13=L13:LL14=L14:LL15=L15
1504 LL16=L16:LL17=L17:LL18=L18:LL19=L19:LL20=L20
1505 LL21=L21:LL22=L22:LL23=L23:LL24=L24:LL25=L25
1506 LL26=L26
1657 FOR KEW=1 TO 25
1658 A(KEW)=X(KEW)
1659 NEXT KEW
1661 M=P
1666 GOTO 128
1670 NEXT I
1890 IF M>-3 THEN 1912 ELSE 1999
1912 PRINT A(1),A(2),A(3),A(4),A(5)
1913 PRINT A(6),A(7),A(8),A(9),A(10)
1914 PRINT A(11),A(12),A(13),A(14),A(15)
1915 PRINT A(16),A(17),A(18),A(19),A(20)
1916 PRINT A(21),A(22),A(23),A(24),A(25),M,JJJJ
1923 PRINT LL1,LL2,LL3,LL4,LL5
1924 PRINT LL6,LL7,LL8,LL9,LL10
1925 PRINT LL11,LL12,LL13,LL14,LL15
1926 PRINT LL16,LL17,LL18,LL19,LL20
1927 PRINT LL21,LL22,LL23,LL24,LL25
1928 PRINT LL26
1999 NEXT JJJJ

This BASIC computer program was run with the IBM basica/D interpreter, and its output from JJJJ=-32000 through JJJJ=-31738 is presented below. (What immediately follows is a manual copy from the computer screen.)

21 83 79 16 9
62 83 29 41 29
73 29 37 66 49
91 53 85 27 46
67 37 18 48 51
0 -31998
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0

21 83 79 16 9
62 83 29 41 29
73 29 37 66 49
91 53 85 27 46
67 37 18 48 51
0 -31994
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0

21 83 79 16 9
62 83 29 41 29
73 29 37 66 49
91 53 85 27 46
67 37 18 48 51
0 -31930
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0

21 83 79 16 9
62 83 29 41 29
73 29 37 66 49
91 53 85 27 46
67 37 18 48 51
0 -31766
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0

21 83 79 16 9
62 83 29 41 29
73 29 37 66 49
91 53 85 27 46
67 37 18 48 51
0 -31738
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0

Interpreted in accordance with line 1912 through line 1928, the output above was obtained in one hour by running only through JJJJ=-31738 on a personal computer with an Intel 2.66 GHz. chip and the IBM basica/D interpreter.

References

[1] Conley, W. (1994, July-September). "A New Approach to Algebra," Computers in Education Journal, IV(3) pp. 65-71.

[2] Mills, W. H. (1953). "A System of Quadratic Diophantine Equations," Pacific J. Math. Vol. 3, pp. 209-220.

[3] Wong, J. Y. (1996). "A Note on Optimization in Integers," International Journal of Mathematical Education in Science and Technology, Vol. 27, No. 6, pp. 865-874.