Jsun Yui Wong
Because of line 333 through line 477 and line 522 through line 566, the computer programn listed below is shorter than the one in the post "A Computer Program for Relative Location of Spherical Facilities" of the present blog. The newer program and its earliest output are as follows:
0 DEFSNG A-Z
3 DEFINT I,J,K
4 DIM X(466),A(466),L(466),K(466),P(466),B(466),S(466),J(466),HS(99),HR(9,9)
6 DIM T(11,11,5),TZ(11,11),TL(33),HT(11,22)
21 FOR IW=1 TO 4
23 FOR JW=IW+1 TO 5
26 READ HR(IW,JW)
28 NEXT JW
29 NEXT IW
33 DATA 25.2312,30.8974,26.4353,27.5426,30.8974
38 DATA 26.4353,27.5426,32.1015,33.2088,28.7467
65 FOR JJJJ=-32000 TO 32000
74 RANDOMIZE JJJJ
76 M=-1D+17
85 FOR I=1 TO 15
88 A(I)=RND*1000
89 NEXT I
126 IMAR=10+FIX(RND*20000)
128 FOR I=1 TO IMAR
129 FOR KK=1 TO 15
131 X(KK)=A(KK)
132 NEXT KK
223 IJL=1+FIX(RND*15)
234 X(IJL)=RND*1000
333 FOR IX=1 TO 4
344 FOR JX=IX+1 TO 5
401 HT(IX,JX)=((X(IX)-X(JX))^2+(X(IX+5)-X(JX+5))^2+(X(IX+10)-X(JX+10))^2)^.5
455 NEXT JX
477 NEXT IX
522 FOR IY=1 TO 4
533 FOR JY=IY+1 TO 5
551 IF HT(IY,JY)-HR(IY,JY)<-.00001 THEN HT(IY,JY)=999999!
555 NEXT JY
566 NEXT IY
1621 PR1=-10*HT(1,2)-15*HT(1,3)-20*HT(1,4)-.01*HT(1,5)
1622 PR2=-30*HT(2,3)-35*HT(2,4)-10*HT(2,5)
1631 PR3=-10*HT(3,4)-20*HT(3,5)
1632 PR4=-15*HT(4,5)
1655 P=PR1+PR2+PR3+PR4
1656 IF P<=M THEN 1670
1657 FOR KEW=1 TO 15
1658 A(KEW)=X(KEW)
1659 NEXT KEW
1661 M=P
1666 GOTO 128
1670 NEXT I
1890 IF M>-4900 THEN 1912 ELSE 1999
1912 PRINT A(1),A(2),A(3),A(4),A(5)
1914 PRINT A(6),A(7),A(8),A(9),A(10)
1915 PRINT A(11),A(12),A(13),A(14),A(15)
1916 REM
1917 REM
1919 PRINT M,JJJJ
1999 NEXT JJJJ
660.8163 671.9393 664.7956 645.4153 656.898
754.6052 750.77 780.2496 751.776 763.7252
130.8193 154.4491 148.1102 152.1257 175.8217
-4859.761 -30413
One notes that the flow of .01 in line 1621 above is an artificial flow.
References
Drezner, Z. "DISCON: A New Method for the Layout Problem," Operations Research 28, 1375-1384 (1980).
Heragu, S. Facilities Design, Third Edition. Boca Raton, Florida: CRC Press, 2008.